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1. INTRODUCTION

Statistical energy analysis (SEA) represents a framework for analyzing the high-frequency
response of complex structures to mechanical or acoustical excitation [1]. In SEA,
a structure is divided into subsystems and the energy #ow between these subsystems is
described using coupling loss factors. In case of coupled plate subsystems, coupling loss
factors are often expressed in terms of wave transmission coe$cients [1, 2]. Expression for
coupling loss factors are derived by combining the transmission coe$cient and the intensity
incident upon the junction on the source plate. The incident intensity depends on the
distribution of the total energy over all directions in the source plate and is found to be
proportional to the product of the energy density (energy per unit area) and the group
velocity of the corresponding wave type [1].
For anisotropic plates, the derivation of the coupling loss factor should take into account

the angle dependence of the wavenumber. This dependence a!ects the energy distribution
over all directions in a reverberant "eld, as well as the direction of the energy #ow
associated with wave propagation. Auld [3] described the energy #ow in anisotropic media
in terms of a Poynting vector. This vector, which is parallel to the heading of the group
velocity, is oriented normal to the curve obtained by plotting the wavenumber as a function
of the wave heading. As illustrated in Figure 1, the wave heading �

�
is not parallel to the

heading �
�
of the group velocity c

�
, except for some discrete values of �

�
.

This behaviour is not restricted to anisotropic media, since it can also be observed for
cylindrical shells consisting of isotropic materials [4]. In fact, a general expression for the
coupling loss factor applicable to anisotropic components has "rst been derived by Langley
[5] for junctions of curves panels. The expression was obtained by following the procedure
brie#y discussed above and the result was written in terms of the wave transmission
coe$cient, the group velocity and the phase velocity on the source plate. Later, Bosmans
et al. [6, 7] presented a di!erent expression which could be calculated directly from the
transmission coe$cient without requiring an evaluation of the group velocity. Although
their results was derived for orthotropic plates, it can easily be extended to anisotropic
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Figure 1. Wavenumber k as a function of the wave heading �
�
in the wavenumber plane. Also indicated are the

group velocity c
�
(�

�
) and its projections on the x-axis and the direction of wave propagation, c

��
(�

�
) and c

�� (��)
respectively.
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plates by increasing the angular range over which the transmitted power is integrated from
�/2 to �. The di!erence in appearance and derivation of the expressions given by Langley
and Bosmans et al. may have raised some questions concerning their applicability. In this
paper, it will be shown that both expressions are identical, and that the coupling loss factor
presented by Bosmans et al. [6, 7] can be derived directly from Langley's formulation [5]
without loss of generality.

2. ANALYSIS

Consider the junction of two anisotropic plates i and j shown in Figure 2. The response of
both "nitesized plates is assumed to be reverberant, and the SEA ensemble average of the
resulting vibration "eld is described as a superposition of plane waves travelling in all
directions [1]. This mode}wave duality allows for the exchange of vibrational energy at the
junction of "nite plates to be quanti"ed by the transmission coe$cient obtained by
modelling the interaction of plane waves at a corresponding junction of semi-in"nite plates.
In this semi-in"nite plate model, a unit amplitude plane wave w

�
is assumed to be travelling

towards the junction with angle of incidence �
�
. This incident wave causes a transmitted

wave w
�
on plate j. The intensity, i.e., energy #ow per unit width, carried by the incident and

transmitted waves in the x direction is equal to I
��
(�

�
) and I

��
(�) respectively. The

transmission coe$cient of the junction is then de"ned as

�
��
(�

�
)"

I
��
(�

�
)

I
��
(�

�
)
. (1)

According to Langley [5], the energy #ow P
��
through the junction of "nite plates in

Figure 2 is expressed in terms of the transmission coe$cient as follows:

P
��
"E

�
��

��
"¸

�� ��
�

e
�
(�

�
)c

���
(�

�
) �

��
(�

�
) d�

�
, (2)



Figure 2. Junction of two anisotropic plates i and j. Incident wave w
�
with heading �

�
on plate i, transmitted

wave w
�
on plate j, and corresponding intensities in the x direction I

��
(�

�
) and I

��
(�

�
).
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where E
�
is the total energy of plate i, � the circular frequency, �

��
the desired coupling loss

factor, ¸
��
represents the junction length and c

���
(�

�
) the x-component of the group velocity

c
��
(�

�
) on plate i (see Figure 1). The energy density e

�
(�

�
) associated with waves travelling in

the direction �
�
is de"ned as [5]

e
�
(�

�
)"

E
�
�

4��n
�
(�)

1

c
�
(�

�
) c

��� (��)
. (3)

In equation (3), c
�
(�

�
) denotes the phase velocity and c

��� (��) the group velocity in the
direction of the wave heading �

�
(see Figure 1). The modal density n

�
(�) for anisotropic

structural components is given by Langley [8] as

n
�
(�)"

S
�

2�� �
�

�

k
�
(�

�
)
�k

�
(�

�
)

��
d�

�
, (4)

where S
�
represents the surface area of plate i and k

�
the wavenumber corresponding to the

incident wave. The product e
�
(�

�
) e

���
(�

�
) in equation (2) is equal to the incident intensity in

the x direction corresponding to the wave heading �
�
. While the x-component of the group

velocity c
���

(�
�
) accounts for the fact that the energy propagates in a direction di!erent from

that of the associated wave, the energy density e
�
(�

�
) incorporates the probability

distribution of the propagation direction over all angles in the reverberant "eld. The "nal
expression for the coupling loss factor for anisotropic components is found by combining
equations (2) and (3) [5]:
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�
) c

��� (��)� d�
�
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In case of an isotropic plate, the integration in equation (5) should be carried out from
!�/2 to #�/2. For anisotropic components, incident waves with heading in the interval
[!�/2, #�/2] may actually carry energy away from the junction. Consequently, the
integration in equation (5) should include all angles between !� and #� for which the
group velocity c

���
(�

�
) is positive [5].

In the approach of Bosmans et al. [6, 7], the distribution of the vibrational energy over all
directions of the reverberant "eld is described using a weighting function D

��
(�

�
). This

function quanti"es the probability distribution of the propagation direction in
a reverberant wave "eld and its use was "rst suggested by Lyon et al. [1]. Bosmans [7]
derived an expression for D

��
(�

�
) in the case of an orthotropic plate, which may be rewritten

for the case of anisotropic plates by adjusting the integration limits.

D
��
(�

�
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�
(�

�
) (�k
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�
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��
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k
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(�

�
) (�k
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(�

�
)/��) d�

�

. (6)

After rewriting equation (6) using the equations

c
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�
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�
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�
)
, c

��� (��)"
��

�k
�
(�

�
)
, (7)

the resulting expression can be combined with equations (3) and (4) to obtain an expression
for the corresponding energy density associated with wave heading �

�
:

e
�
(�

�
)"

E

2�S
�

D
��
(�

�
) . (8)

Equation (8) shows that the total energy densityE
�
/S

�
is equally distributed over all angles in

the plate when D
��
(�

�
)"1. The latter conditions is satis"ed for an isotropic plate and

corresponds to an ideal di!use wave "eld.
Substitution of equation (8) into equation (2) yields
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�
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�
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It is interesting to note that the latter equation can be considered as the generalization of the
coupling loss factor for isotropic plates, which can easily be derived from equation (9) by
setting D

��
(�

�
)"1 and c

���
(�

�
)"c

�
cos �

�
. Equation (9) can be further simpli"ed by

considering that the incident intensity I
��
(�

�
) in equation (1) can also be written as the

product of energy density and group velocity. Since I
��
(�

�
) corresponds to a plane wave with

unit amplitude, the associated energy density e�
�
is [2]

e�
�
"

m	
�
��

2
, (10)

where m	
�
denotes the mass per unit area of plate i. As a result, the x-component of the

incident intensity can be expresses as

I
��
(�

�
)"e�

�
c
���

(�
�
)"

m	
�
��

2
c
���

(�
�
). (11)

Finally, substitution of equations (1) and (11) into equation (9) leads to the expression for
the coupling loss factor of anisotropic components as presented by Bosmans et al. in
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references [6, 7]:
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¸
��

���M
�
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�
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��
(�

�
) d�

�
, (12)

whereM
�
equals the total mass of plate i. Also, in this case, the integration in equation (12)

should include all angles for which the incident intensity I
��
(�

�
) is positive. It should be

noted that an expression for the group velocity is not needed to evaluate I
��
(�

�
), since the

incident intensity in the x direction can be expressed in terms of the forces F
�
and

corresponding velocities v
�
at a cross-section perpendicular to the x-axis [2]:

I
��
(�

�
)"

1

2
�
�

Re 
F
�
v*
�
� , (13)

where && * '' denotes complex conjugate and the summation is taken over the degrees-of-
freedom involved.
Since equations (5) and (12) have both been derived from equation (2), the coupling loss

factors proposed by Langley [5] and Bosmans et al. [6, 7] are essentially the same. The
implementation of equation (12) may appears to be more practical, since it does not explicitly
require an expression for the group velocity on the source plate. However, equation (5) is not
much more di$cult to implement because the group velocity in the direction of wave
propagation c

��� (��) can be easily derived from expression (7), and the x-component of the
group velocity c

���
(�

�
) can be obtained by combining equation (11) and (13).

3. CONCLUSIONS

Two previously published formulations for the coupling loss factor applicable to coupled
anisotropic components were discussed. The "rst one was derived in the context of coupled
cylindrical panels and was based on an extensive theoretical analysis. The second one was
established in the context of orthotropic plates and was the result of a simpler formulation
where the coupling loss factor could be deducted directly from the transmission coe$cient.
Although both expressions appeared to be very di!erent, it was shown that they are
essentially identical and that there is no apparent reason for preferring one formulation over
the other.
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